• Users Online: 111
  • Print this page
  • Email this page


 
 Table of Contents  
CASE REPORT
Year : 2017  |  Volume : 55  |  Issue : 3  |  Page : 238-242

Iridocorneal endothelial syndrome: A case report


Department of Cornea, RIO GOH, Chennai, Tamil Nadu, India

Date of Web Publication9-Mar-2018

Correspondence Address:
Dr. V Sharmila Devi
RIO GOH, Egmore, Chennai, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/tjosr.tjosr_20_17

Get Permissions

  Abstract 


Iridocorneal endothelial (ICE) syndrome includes a group of rare ocular pathologies with unilateral involvement, frequently affecting young women. The disease complex includes essential iris atrophy, Chandler's syndrome, and Cogan–Reese syndrome. We present a case of ICE, in which there was a combination of features of essential iris atrophy and Cogan–Reese syndrome.

Keywords: Cogan–Reese syndrome, essential iris atrophy, glaucoma, shunts, trabeculectomy


How to cite this article:
Devi V S, Venkatraman P, Babu A. Iridocorneal endothelial syndrome: A case report. TNOA J Ophthalmic Sci Res 2017;55:238-42

How to cite this URL:
Devi V S, Venkatraman P, Babu A. Iridocorneal endothelial syndrome: A case report. TNOA J Ophthalmic Sci Res [serial online] 2017 [cited 2019 Oct 14];55:238-42. Available from: http://www.tnoajosr.com/text.asp?2017/55/3/238/226858



Iridocorneal endothelial (ICE) syndrome is a rare ophthalmic disorder, wherein the basic pathology is an abnormal corneal endothelium that leads to varying degrees of corneal edema, iris atrophy, and secondary angle closure glaucoma.[1] It usually occurs unilaterally, in middle-aged women. It is usually sporadic, more common in whites, with no familial, congenital, and systemic associations. The true etiology of ICE syndrome is unclear. Alvarado et al. have proposed a viral cause for the disease.[2]

It is considered to be an acquired disorder probably due to Herpes simplex virus and Epstein–Barr virus etiology.

The ICE cell is pathognomonic of this syndrome. These corneal endothelial cells are abnormally large and show increased pleomorphism and show epithelial-like characteristics. The abnormal endothelial cells may migrate posteriorly forming a membrane that covers the adjacent structures, iris, and trabecular meshwork. The contraction of this membrane leads to characteristic iris changes, iridotrabecular synechiae, and corectopia.

The membrane may occlude the angle and cause open-angle glaucoma or can cause a synechial closure resulting in angle closure glaucoma [3].


  Case History Top


A 24-year-old female, with no relevant familial history, was admitted to our clinic which is a tertiary referral center with the complaints of photophobia in her RE. There was no history of redness, pain, or watering. There was no history of trauma. Her general and systemic examination was within normal limits. She had been referred from another center.

Clinical examination

On admission to our clinic, the patient was in good health, and her BCVA was 6/6. [Figure 1]
Figure 1: Profile picture

Click here to view


Slit-lamp examination revealed a fairly clear cornea with moderate anterior chamber depth. There was iris stromal hyperplasia with multiple stretch holes at 10 o' clock position and 1 o' clock position [Figure 2] and multiple pedunculated nodules between 5 and 9 o' clock with corectopia and ectropion uveae [Figure 3].
Figure 2: Anterior segment picture showing iris atrophy and stretch holes

Click here to view
Figure 3: Anterior segment picture showing pedunculated nodules between 6 to 9 o'clock

Click here to view


On gonioscopy, the angle was completely closed with patchy synechiae in the nasal and superior angles in RE. The intraocular pressure by Goldmann applanation tonometry was 48 mmHg at 10 am in the morning in RE [Figure 4].
Figure 4: Gonioscopy picture of the RE showing closed angles in all quadrants with patchy synechiae in superior and nasal angle

Click here to view


Fundus examination showed clear media in the RE with optic nerve head (ONH) showing a vertical cup-to-disc (CD ratio) of 0.6, horizontal CD ratio of 0.5, and nasalization of vessels. Anterior segment examination and fundus examination of the LE were within normal limits.

A clinical diagnosis of OD ICE syndrome was made.


  Gonioscopy Top


LE Gonioscopy showed open angles.


  Ultrasound Biomicroscopy Top


Ultrasound biomicroscopy of the RE showed the central corneal thickness of 0.48 mm. Anterior chamber depth was variable [Figure 5].
Figure 5: Ultrasound biomicroscopy picture showing iris atrophy

Click here to view


Lens AP diameter was 3.82 mm. Hypoplastic iris was seen from 4 to 7 o' clock position with stretching and thinning of iris superiorly. Widening of retro-iridic space was noted from 4 to 7 o' clock position. Broad-based PAS was seen in almost 360° [Figure 6].
Figure 6: Ultrasound biomicroscopy pic of RE

Click here to view


Normal cell volume is usually <40%

Here, there was polymegathism with a cell volume of 48% (normal <40%). Hexagonality of >50% is considered normal, and in this case, it was only 33%.

Rounding off of cell angles, loss of hexagonal shape, and blacked-out areas were seen within the cell [Figure 7], [Figure 8].
Figure 7: Specular microscopy picture showing pleomorphism and polymegathism

Click here to view
Figure 8: Specular microscopy picture of RE showing pleomorphic cells with polymegathism

Click here to view


Specular microscopy of LE was within normal limits.

It showed a good cell density and hexagonality of >63% [Figure 9].
Figure 9: Specular microscopy picture of LE showing normal endothelial cells

Click here to view


Fundus examination of the RE showed clear media with ONH showing a vertical CD ratio of 0.6, horizontal CD ratio of 0.5, and nasalization of vessels, and foveal reflex was present [Figure 10].
Figure 10: Fundus picture of RE

Click here to view


Fundus examination of the LE showed a clear media with normal disc and vessels [Figure 11].
Figure 11: Fundus picture of LE

Click here to view



  Automated Perimetry Top


RE AP was reliable. It showed few areas of depressed sensitivity in upper arcuate area with a slight increase in loss variance of 13.2 [Figure 12].
Figure 12: Automated perimetry picture of RE

Click here to view


LE fields were within normal limits.

The final diagnosis was made based on the epidemiological data (unilateral symptoms in a young female with no family history), patient history (sudden onset), clinical examination (ocular symptoms with no systemic manifestations), and ancillary tests (specular microscopy). The differentials such as Axenfeld–Reiger syndrome and posterior polymorphous dystrophy are bilateral, whereas this was a unilateral condition.

Serology was negative for Herpes simplex virus.

The final diagnosis was OD ICE syndrome with secondary angle closure glaucoma.


  Management Top


The patient was on maximal medical therapy with 3 topical antiglaucoma medications and one systemic AGM. Surgery was recommended because of uncontrolled IOP in spite of maximal medical therapy.

She underwent Mitomycin C augmented trabeculectomy with peripheral iridectomy.

Surgery was uneventful and the morning IOP after 2 days was 12 mmHg without treatment, the ACD (anterior chamber depth) was moderate, and the filtering bleb was functional [Figure 13].
Figure 13: Postoperative anterior segment picture at 2 months

Click here to view


At 1, 3, and 5 months, the IOP was well maintained without medications, and it was a complete success.

Vision was preserved.

At 5-month follow-up, the IOP was found to be raised. It was 24 mmHg. Visual fields did not show any deterioration. She was taken up for bleb needling with subconjunctival 5FU in the inferior quadrant. Her IOP was 14 mmHg the following morning. It was maintained in the monthly follow-ups too.

She was lost to follow-up due to personal reasons.

Two years later, she presented with corneal edema, decreased visual acuity, and IOP of 34 mmHg.

There was a history of 7-month amenorrhea.

Anterior segment picture taken 2 years later shows the progression of the disease condition. There were new stretch holes, and the stretch hole at 2 o' clock had merged with the iridectomy [Figure 14].
Figure 14: Anterior segment picture taken 2 years later showing increase in the size and number of stretch holes

Click here to view


ONH showed the progression of glaucomatous damage.

She was treated with topical medications with punctal occlusion, counseled about aqueous drainage implant and was asked to come after the delivery.


  Discussion Top


Trabeculectomy with antifibrotic agents is the surgery of choice for ICE syndrome. Shields et al. have reported a 69% success rate in a study on 33 eyes [4] while Yanoff and Duker reported a 64% of success rate 1-year postoperatively and a 36% at 3 years.[5]

It has strong initial success rates. Unfortunately, failure occurs more rapidly than with most other types of glaucoma for a variety of reasons.

The usual cause of failure in these young patients is the robust subconjunctival fibrosis. Another important cause related to ICE is endothelial membrane occluding the filtering ostium and PAS formation that can obstruct the drainage pathway.[6]

Aqueous shunt surgery is considered by few as a common first-line surgical approach for glaucoma associated with ICE given the intractable nature of the disease. In pseudophakic eyes, the tube can be placed in the ciliary sulcus or pars plana. Success rates with drainage device surgery have been reported to be about 70% at 1 year and 53% at 5 years.[7]


  Case Particularity Top


The most common clinical variant is Chandler's syndrome (50%) followed by essential progressive iris atrophy (25%) and iris nevus (Cogan Reese) syndrome (25%).

The case stands out due to its complexity. It predominantly had progressive changes in the iris and can be classified as essential iris atrophy but there were pedunculated nodules as well.

She had features suggestive of both essential iris atrophy and Cogan–Reese syndrome. A long-term follow-up is necessary because the disease itself is progressive in nature.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Levy SG, Kirkness CM, Moss J, Ficker L, McCartney AC. The histopathology of the iridocorneal-endothelial syndrome. Cornea 1996;15:46-54.  Back to cited text no. 1
[PUBMED]    
2.
Alvarado JA, Underwood JL, Green WR, Wu S, Murphy CG, Hwang DG, et al. Detection of herpes simplex viral DNA in the iridocorneal endothelial syndrome. Arch Ophthalmol 1994;112:1601-9.  Back to cited text no. 2
    
3.
Laganowski HC, Kerr Muir MG, Hitchings RA. Glaucoma and the iridocorneal endothelial syndrome. Arch Ophthalmol 1992;110:346-50.  Back to cited text no. 3
    
4.
Shields MB, Campbell DG, Simmons RJ. The essential iris atrophies. Am J Ophthalmol 1978;85:749-59.  Back to cited text no. 4
    
5.
Yanoff M. Iridocorneal endothelial syndrome: Unification of a disease spectrum. Surv Ophthalmology 1979;24:1-2.  Back to cited text no. 5
    
6.
Chandran P, Rao HL, Mandal AK, Choudhari NS, Garudadri CS, Senthil S, et al. Glaucoma associated with iridocorneal endothelial syndrome in 203 Indian subjects. PLoS One 2017;12:e0171884.  Back to cited text no. 6
    
7.
Kim DK, Aslanides IM, Schmidt CM Jr. Spaeth GL, Wilson RP, Augsburger JJ, et al. Long-term outcome of aqueous shunt surgery in ten patients with iridocorneal endothelial syndrome. Ophthalmology 1999;106:1030-4.  Back to cited text no. 7
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9], [Figure 10], [Figure 11], [Figure 12], [Figure 13], [Figure 14]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Case History
Gonioscopy
Ultrasound Biomi...
Automated Perimetry
Management
Discussion
Case Particularity
References
Article Figures

 Article Access Statistics
    Viewed868    
    Printed50    
    Emailed0    
    PDF Downloaded70    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]